
SPINning Parallel Systems Software?

Olga Shumsky Matlin, Ewing Lusk, and William McCune

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439, USA
fmatlin,lusk,mccuneg@mcs.anl.gov

Abstract. We describe our experiences in using Spin to verify parts of
the Multi Purpose Daemon (MPD) parallel process management system.
MPD is a distributed collection of processes connected by Unix network
sockets. MPD is dynamic: processes and connections among them are
created and destroyed as MPD is initialized, runs user processes, recovers
from faults, and terminates. This dynamic nature is easily expressible in
the Spin/Promela framework but poses performance and scalability
challenges. We present here the results of expressing some of the parallel
algorithms of MPD and executing both simulation and veri�cation runs
with Spin.

1 Introduction

Reasoning about parallel programs is surprisingly diÆcult. Even small parallel
programs are diÆcult to write correctly, and an incorrect parallel program is
equally diÆcult to debug. In our experience writing Multi Purpose Daemon
(MPD), a parallel system program described below, this characterization has
been borne out: despite MPD's small size and apparent simplicity, errors have
impeded progress toward code in which we have complete con�dence. (Of course,
another possible explanation is that as parallel programmers we are inept; we
reject this hypothesis because it is impossible to verify rigorously.)

Such a situation motivates us to explore program veri�cation techniques.
Since our programs are small and our algorithms simple (when viewed from the
perspective of a single process), we hope that program veri�cation software will
be able to handle our problem; since the diÆculty of reasoning about paral-
lelism has shown us that we really do need help with this problem, investing in
veri�cation is worth the e�ort.

MPD [1, 2] is a process manager for parallel programs and is itself a parallel
program. Its function is to start the processes of a parallel job in a scalable way,
manage input and output, deal with faults, and cause jobs to terminate cleanly.
While the job is running, it may need to provide services to the application,
such as implementing a barrier or assisting an application process in setting

? This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the OÆce of Advanced Scienti�c Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-38.

up communication with another process in the job. MPD is the sort of process
manager needed to run applications that use the standard MPI [11, 12] library
for parallelism, although it is not MPI-speci�c. MPD is distributed as part of
the portable and publicly available MPICH [4,5] implementation of MPI.

Our �rst attempt [10] to use formal veri�cation techniques to ensure correct-
ness of MPD algorithms was based on the ACL2 [8,9] theorem prover. While
ACL2 provided a useful simulation environment, formulating desired properties
of and reasoning about models of MPD algorithms proved diÆcult. Our second
approach, described here, employs the model checker Spin [6, 7]. Our particular
application is unusual in that the number of entities and the topology of the
communication network can change over time. We also need to model a larger
number of entities than many Spin applications do. In Section 4 we discuss the
challenges that these properties provide to the Spin system.

In Section 2 we describe MPD in more detail and outline our method for
modeling a distributed, dynamic set of Unix processes in Promela. In Section 3
we describe our experiences with this approach, which we believe shows potential
bene�ts for the further development ofMPD. In Section 4 we present the concrete
results of speci�c veri�cation experiments, and we conclude in Section 5 with a
summary of the current project status and our future plans.

2 Approach

To present what we want to verify and how we have gone about it, we describe
here a few salient features of the MPD system. More details can be found in [1]
and [2].

The MPD system consists of several types of processes. The daemons are
persistent (may run for weeks or months at a time, starting many jobs), and
there typically exists one daemon instance per host in a TCP-connected net-
work. Manager processes are started by the daemons to control the application
processes (clients) of a single parallel job and provide most of the MPD features.
The daemons are connected in a ring. A console process is started by a user or
another process to connect to the daemon ring and give it a command, such as
mpirun to start a user parallel job. Separate managers for each user process,
started by the daemons, support individual process environments for the user
processes. The managers also connect themselves into a ring.

Exactly how the daemons are started or connected is not important, since the
system provides a number of choices, and the process need not be particularly
fast. A console command is started by the user, either interactively or under
the control of a batch scheduler. The daemons spawn the managers, which use
information given them by the daemons to connect themselves into a ring, then
spawn the clients. The startup messages traverse the ring quickly, so most in-
vocation of new processes and connecting takes place in parallel, leading to fast
startup even for jobs involving hundreds of processes. The situation is as shown
in Figure 1, where the clients may be application MPI processes. The vertical
solid lines represent connections based on pipes; the remaining solid lines all

2

console

daemons

clients

managers

Fig. 1. Daemons with console process, managers, and clients

represent connections based on Unix sockets. The dashed lines represent the
trees of connections for forwarding input and output, and the dotted lines rep-
resent potential connections among the client processes. The dot-dashed line is
the original connection from console to local daemon on a Unix socket, which is
replaced during startup by the network connection to the �rst manager.

An important feature of MPD for our purpose here is that the structure
of the code for each of the three process types (daemon, manager, console) is
essentially the same: after initialization, the process enters an essentially in�nite
loop, implemented by a Unix socket function select, which indicates which
sockets have messages available. That is, most of the time, the process is idle.
When a message arrives on one of its sockets from one of the processes it is
connected to, it wakes up, parses the message, calls the appropriate handler
routine to process the message, and re-enters the idle state by calling select

again. The handler routine itself does a small amount of processing, typically
resulting in the creation of new sockets or in the sending of messages on existing
sockets. The logic of the distributed algorithms executed by the system as a
whole, therefore, is contained primarily in the handlers. No individual message,
received by one process, results in much activity. The individual handlers are
typically implemented in a few lines, or at most a few tens of lines, of C code.

This structure allows us to treat the system as comprising three layers (see
Figure 2). The top tier corresponds to the upper-level logic of the process (ini-
tialization, select loop, parsing and dispatching of incoming messages to han-
dlers). This is sequential logic that we have con�dence in; hence, although we
must model this part of each process in some way in Promela, the Promela
model does not have to be faithful to the algorithms in this layer. The bottom
layer corresponds to well-understood Unix operations on sockets. Again the code
is sequential and not of particular interest. It is in the middle layer (the handlers)
that the interesting parallel algorithms are expressed and the bugs appear.

Veri�cation of the algorithms executed by di�erent components of the MPD
system is not the only goal of the project. Equally important and desirable is
the ability to translate, possibly automatically, a veri�ed Promela model to
executable C code while preserving the veri�ed properties of the model. Only
the middle layer of the model has to be translated. Thus, in our Promela model
of each type of process, we take considerable liberties with the top and bottom

3

Upper−Level Process Logic

Handlers

Lower−Level Unix Operations

Fig. 2. Layers of code in MPD

layers, but we wish the Promela code for the middle layer (the handlers) to
be directly translatable into C or the scripting language Python. Our current
implementation of MPD is in C.

2.1 Modeling Components of the MPD System

Components of the MPD systemmap naturally toPromela entities: a proctype
is de�ned for each di�erent MPD process type; individual daemon, manager,
console, and client processes correspond to active instances of the corresponding
proctypes; sockets map to channels; and messages that are read and written
over the sockets correspond to messages traveling on the channels. Our models
of individual process types preserve the three-layer structure (Figure 2) of exe-
cutable MPD code for clarity, readability, and modularity and also to facilitate
the translation of veri�ed handler algorithms to executable code.

The top tier of the model typically contains the start-up logic of a partic-
ular MPD algorithm followed by a mechanism for sampling and processing the
attached channels. The middle tier corresponds to a collection of handlers that
de�ne the set of message types permitted for each type of communication link as
well as the behavior of the process in response to each message type. The lowest
tier consists of a Promela-based implementation of the Unix socket primitives.
Note that an MPD programmer relies on the prede�ned functionality of the
socket processing functions but does not implement the primitives. Creating a
Promela library of Unix socket primitives allows us to (1) hide the details of
the socket model from both the veri�cation and translation to the executable
code, (2) interchange, if need be, di�erent models of sockets without changing
the remainder of the model, and (3) reuse the socket model in veri�cation of
independent MPD algorithms.

2.2 Modeling Unix Sockets

A Unix socket is an endpoint of a bidirectional communication path between
two processes. In MPD, sockets are manipulated when a connection between two

4

left connection fd = 5

MPD process 2

right connection fd = 3

MPD process 1 3 5

Fig. 3. Connected MPD processes

5

0 1 2 3 4 5 6 7

3

1 2

RHS LHS

0

0

FREEuse_flag

owner_pid

other_fd

Fig. 4. Example state of the socket array

processes is established or destroyed. Correct operation of some MPD algorithms
depends on correct allocation and manipulation of sockets, while other MPD
algorithms assume a static system of processes and communication links between
them. Our objective is to model sockets eÆciently to support veri�cation of both
types of MPD algorithms.

An MPD process runs on top of an operating system, which provides (among
other services) the implementation of sockets and their handling.We must model
the sockets, but we do so without creating a model of the operating system. In
fact in our model, the operating systems of the hosts on which MPD processes
execute are combined into a single implicit global operating system. The only
explicit manifestation of the operating system is the socket descriptor structure
described below. In the model, the functionality of the operating system is hidden
inside the socket library, and its tasks are handled directly by the MPD processes.

A Unix socket is referenced by a �le descriptor (fd) and represents a bu�er
for reading and writing messages. Our Promela model of a socket consists of a
channel and a three-part record that describes how the particular socket should
be used. A model of an MPD algorithm contains an array of channels and an
array of socket descriptor structures. The �rst �eld of the socket descriptor
structure references the fd at the other endpoint of the connection. The second
�eld identi�es a process that has an exclusive privilege to read from, write to, and
deallocate the socket. The third �eld is a ag that indicates whether the socket
has been allocated to a particular process and, if so, how it can be used. Outside
the context of MPD, the usage ag need indicate only whether the socket is free
or allocated. However, since the model is created speci�cally for use with MPD,
the ag �eld of the socket descriptor structure is also used to denote how the
socket is used by an MPD process. For example, when a ring of MPD processes
is established, sockets corresponding to the right-hand side of the correction are
processed di�erently from the sockets on the left. Figure 3 shows two connected
MPD processes. Figure 4 shows the corresponding state of an array of socket
descriptors as well as one unallocated socket.

5

The following Unix sockets primitives have been modeled in accordance with
their de�ned functionality[14]: connect, accept, close, read, and write. Other
sockets primitives, such as socket, bind, and listen, are not explicitly modeled
but are implied in the model. Select is used only in the top tier of the MPD
process. We include a model of select in the socket library, but its implemen-
tation is greatly inuenced by the speci�c way in which the function is used by
MPD algorithms. The modeled socket functions, de�ned as inline Promela

functions of the same name, serve as an interface between the bottom and mid-
dle tiers of the model. Below is an excerpt of the socket library together with
the de�nitions of the channels and socket descriptor structure. De�nitions of
self-explanatory functions and macros are omitted.

chan connection[CONN_MAX] = [QSZ] of {msg_type};

typedef conn_info_type {

unsigned other_fd : FD_BITS;

unsigned owner_pid : PROC_BITS;

unsigned use_flag : FLAG_BITS;

};

conn_info_type conn_info[CONN_MAX];

inline read(file_desc, message)

{

connection[file_desc]?message;

}

inline write(file_desc, message)

{

connection[conn_info[file_desc].other_fd]!message;

fd_select_check(conn_info[file_desc].other_fd)

}

inline close(file_desc)

{

IF /* other side has not been closed yet */

:: (conn_info[file_desc].other_fd != INVALID_FD) ->

set_other_side(conn_info[file_desc].other_fd,INVALID_FD);

fd_select_check(conn_info[file_desc].other_fd)

FI;

deallocate_connection(file_desc)

}

inline connect(file_desc, lp)

{

allocate_connection(j); /* server's connection */

6

set_owner(j, lp);

set_handler(j, AWAIT_ACCEPT);

allocate_connection(file_desc); /* client's connection */

set_owner(file_desc, _pid);

set_other_side(j, file_desc); /* relate connections */

set_other_side(file_desc, j); /* to each other */

lp_select_check(lp)

}

inline accept(file_desc)

{

file_desc = 0;

do

:: (file_desc >= CONN_MAX) ->

assert(0) /* block if no connect was made */

:: (readable_lp(file_desc,_pid)) ->

set_handler(file_desc, NEW);

break

:: else ->

file_desc = file_desc + 1

od

}

Notice that read(fd) and write(fd) operate on di�erent sockets. The read-
ing operation amounts to receiving a message from the connection[fd] chan-
nel, while the writing operation places the message on the other bu�er of the
connection, which is pointed to by the other fd �eld of conn info[fd]. This
approach ensures that the connection is truly bidirectional and that the two
processes at the endpoints of the connection can read and write independently.
Connect and accept are companion operations. To establish a connection, a
client process connects to a listening port on the server process. To complete
the connection, the server must accept the connection request from the client.
In the model, the client allocates both sockets of the connection and sets the
use flag of the server's socket to AWAIT ACCEPT. The accept operation then
locates the socket with the set ag. In Unix, an accept will block if executed
before a connect is issued. The Promela model also implements this behavior.
Finally, the close operation deallocates the socket. When a close is issued in
Unix, the process on the other side of the connection essentially sees an EOF on
the corresponding socket. To simulate the behavior in Promela, the model of
the close operation sets the other fd of the remaining part of the connection
to an invalid value. Write, connect, and close operations contain references
to ffd,lpg select check functions, which are helper functions to the select

operation. They set a bit for the owner process of the connection, indicating
that the process can leave the idle state and do some processing in response to
received messages or other set ags. The select function blocks until the bit is
set.

7

2.3 The Road Not Taken

One may model the MPD system in many ways. We are fully prepared for
the possibility that as this project progresses and we model other kinds of MPD
algorithms, our model will change. The three-layered approach allows us to make
dramatic changes in di�erent levels of the model without a�ecting the remainder
of the model. We experimented with several di�erent models of the MPD system
and came to the following conclusions.

While it is tempting to model the operating system explicitly and to hide
the manipulation of the sockets inside such a model, doing so goes against the
methodology of Spin/Promela model construction. An explicit model of the
operating system produces a process that simply forwards messages between
daemons, managers, clients, and consoles, resulting in a rapid explosion of the
state space.

One can model the socket operations by sending explicit messages. For ex-
ample, a connect can result in a message that is consumed by the corresponding
accept. A close operation can send a special eof message on the other end of
the connection, if it is still open. The select operation may be viewed as a mes-
sage whose parameters include references to sockets, which should be sampled
for messages. The select would return when a response message is received.
The parameters of the response message could contain the references to the
sockets that in fact have messages that are ready for consumption. After experi-
menting with such an approach, we decided that the model should contain only
those messages that represent explicit communication between MPD processes,
while communication that occurs between the host operating systems should be
represented by other means, such as setting and resetting of ags.

3 Early Experiences with Modeling and Veri�cation

This is our �rst Spin project. Initial e�orts concentrated on investigating ap-
plicability of the Spin-based approach to our problem. We experimented by
constructing di�erent models of Unix sockets and di�erent models of MPD algo-
rithms and attempting veri�cation of these models. These e�orts resulted in an
early success in demonstrating that a proposed MPD algorithm was incorrect.1

3.1 A Buggy Algorithm for Creating a Daemon Ring

Establishment of a ring of daemons, the �rst step of the MPD system, and
maintenance of the ring are central to the operation of MPD. Informally, daemon
ring creation proceeds as follows. The initial daemon establishes a listening port

1 Admittedly, our focus at the time was on learning Spin and Promela and not on
development of MPD algorithms. Had we been concentrating on the latter topic, the
rather obvious error we discovered with Spin's aid probably would have been found
during early stages of design. Nonetheless, we view the experience as evidence of the
usefulness of the Spin-based approach to veri�cation of MPD algorithms.

8

D−rightD−right

D−new

D−left

D−new

D−left

connecting
to D−left

Fig. 5. Ring insertion

to which subsequent connections are made. The daemon connects to its own
listening port, creating a ring of one daemon. The listening port of the �rst
daemon and the name of the host processor are queried from the console. The
desired number of daemons is then initiated and directed to enter the ring by
connecting to the �rst daemon. Figure 5 shows the result of inserting a new
daemon into an existing ring. Upon completion of the insertion the old connection
between daemons on the right and left of the new daemon is disconnected (shown
in the �gure by the dashed line). Note that in the special case of insertion into
a ring of one daemon, the daemon plays both the left and the right roles.

Initially we modeled an algorithm that allowed new daemons to enter the ring
sequentially. Figure 6 presents the algorithm as a message sequence chart. The
new daemon is supplied with the information it needs to initiate a connection the
daemon D-left, so identi�ed because it will end up as the left-hand side neighbor
of the new daemon. The connection is accepted by D-left. The new daemon then
queries the D-left daemon about the coordinates of its right-hand side neighbor.
As no information about the state of the ring is kept by the daemons in this
algorithm, D-left queries D-right for its listening port number and the name of
the host. D-right returns the requested information, which is then forwarded
to the new daemon. The new daemon declares itself the new right-hand side
neighbor ofD-left, which replaces its existing right-hand side connection with the
connection to D-new. The old connection is closed. The new daemon continues
to enter the ring by connecting to D-right using the coordinates it received in
the rhs info return message from D-left. The connection is accepted, and the
new daemon declares itself the new left-hand side of D-right, which closes the
remaining endpoint of the old connection.

MPD design requirements, however, mandate that several ring insertion
commands can be issued simultaneously. Moreover, an MPD process can be
blocked only by a select. (The second requirement is ful�lled if there are no
blocking read statements within the body of any handler.) Our sequential al-
gorithm exhibits neither of the mandated properties. The algorithm assumes
that the sequence of messages rhs info request, . . . , new rhs is not inter-
rupted, that is, D-new sends an rhs info request message and blocks until it
receives the rhs info return message. D-left is similarly blocked upon sending
the rhs info returnmessage until the receipt of the new rhs message. If the al-
gorithm is changed so that daemons are blocked only by a select and several new
daemons simultaneously enter the ring, an erroneous execution scenario is possi-

9

accept
D−new

connect
D−left accept

D−newrhs_info_request

info_request

info_return

rhs_info_return

new_rhs

connect

D−rightD−new D−left

D−right

close old lhs

close old rhs

new_lhs

Fig. 6. Sequential ring insertion algorithm

ble. The error occurs when two daemons attempt to simultaneously enter a ring
of more than one daemon. The initial connection is made by both new daemons
to the same daemon in the ring. Then both daemons issue an rhs info request.
If the processing of the resulting messages is interleaved, both new processes are
told to connect their right-hand side to the same daemon. A ring will not be
established in this case. In the correct algorithm, one of the new processes should
connect its right-hand side to the other new daemon, which should connect its
right-hand side to the existing daemon. The algorithm is �xed by storing on
each daemon the coordinates of its right-hand side neighbor. Doing so makes
unnecessary the series of messages to request and return this information to the
new daemon.

This error was discovered during simulations of the Promela model within
Spin. The experience was important not only because Spin helped us �nd an
error but also because Spin helped us to do so very quickly. This experience leads
us to believe that the tool will become invaluable in future development e�orts
both for veri�cation and for rapid prototyping and testing of new algorithms.

10

3.2 Early Problems with Modeling and Veri�cation

Our early models were naive because of our inexperience and our attempts to
match the model too closely to C code. Including an explicit model of the op-
erating system for socket handling led to extreme state space explosion while
requiring a long state vector size. After examining the literature on pragmatic
use of Spin [3,13], we developed much leaner models. In optimizing our original
explicit models we tried to �nd a level of abstraction that preserved the corre-
lation of the Promela model to the eventual C code while keeping veri�cation
feasible.

4 Veri�cation of MPD Algorithms

An MPD daemon ring is a dynamic structure: new processes may enter the ring
at any time, and existing processes or their host processors may crash or may
shut down in an orderly fashion. We modeled and veri�ed algorithms for ring
creation and ring recovery after a single process/processor crash. The majority
of MPD algorithms reside in the managers. We modeled and veri�ed a barrier
algorithm, an example of a manager-level functionality, which ensures that all
clients reach a certain point in the execution of a parallel job before any client
is allowed to proceed further.

All veri�cation runs were conducted on a 933 MHz Pentium III processor
with 970 MB of usable RAM. We used default XSpin settings for all veri�ca-
tion attempts, except when we increased the memory limit to allow the search
to complete. In cases where veri�cation did not complete with default parame-
ters within physical memory limits, veri�cation with compression (-DCOLLAPSE
compile-time directive) was performed. Such experiments are identi�ed by an
asterisk.

4.1 Ring Establishment Algorithm

Figure 7 shows a message-sequence chart representation of an algorithm that al-
lows parallel insertion of daemons into the ring. A minor di�erence between this
algorithm and the ring establishment algorithm described in Section 3 (Figure 6)
is that the new rhs message is sent before the coordinates of D-right are sup-
plied to D-new via the message reconnect rhs. The major di�erence is that in
this algorithm each daemon records and maintains the identities (listening port
number and the host name) of the two daemons located to its right. Strictly
speaking, only the identity of the immediate right-hand side neighbor is needed
to establish the ring. To recover from an unexpected crash of a daemon, how-
ever, the identity of the second right-hand side neighbor (rhs2) must be known
as well. The algorithm involves sending a message of type rhs2info, to commu-
nicate this information to the appropriate daemon. This operation is not shown
in the �gure. In a small ring (fewer than three daemons) or when a ring is being
created, special case logic ensures that appropriate information is forwarded to

11

connect
D−left accept

D−new
new_rhs

close old rhs

connect
D−right accept

D−newnew_lhs

close old lhs

D−rightD−new D−left

reconnect_rhs

Fig. 7. Parallel ring insertion algorithm

the correct daemon. In the general case, upon receipt of the new rhs message D-
left sends the rhs2info message, in a counterclockwise direction along the ring,
to its left-hand side neighbor, indicating that it has a new rhs2, namely, D-new.
In addition, upon receipt of the new lhs message, D-right sends the rhs2info

message along the ring, also in a counterclockwise direction, to D-new. The rhs2
neighbor of D-new is the right-hand side neighbor of D-right.

The algorithm was modeled by using the three-tiered approach described
above. To check whether the algorithm is correct, we verify that the resulting
system topology, which is implicit in the socket descriptor structures array, is
in fact a ring of the correct size. In addition, we check that the state informa-
tion (identities of the two neighbors to the right) agrees with the information
in the socket descriptor structures array. These two checks are performed when
the ring establishment algorithm is completed, which in reality corresponds to
all daemons entering an idle state. In the Promela model this corresponds to
a timeout. A properly connected ring manifests itself in successfully support-
ing operation of daemon-level algorithms. In fact, MPD designers and users test
whether the ring was established successfully by executing one of such algorithms
and examining its results. The algorithm, invoked by mpitrace, reports the iden-
tities of all daemons and their position in the ring. To convince our \customers"
(i.e., MPD designers) that the Promela model of the ring establishment algo-
rithm is correct, we also verify that upon its completion, the trace algorithm
terminates after having visited every daemon in the ring. The trace algorithm is

12

Correctness Model Time Memory Vector Size States Search
Property Size (s) (MB) (byte) Stored/Matched Depth

State 1 0.00 2.5 40 10/0 9
2 0.00 2.5 92 44/23 21
3 0.05 3.0 136 4304/5278 44
4 105.35 768 224 3.83e+06/7.97e+06 115

Trace 1 0.00 2.5 40 14/0 13
2 0.00 2.5 92 56/27 29
3 0.80 3.3 136 5743/6718 58
4* 159.33 173 224 4.57e+06/9.28e+06 115

Table 1. Veri�cation statistics for the ring establishment algorithm

implemented both in MPD and in our model by sending two kinds of messages
along the ring, which leads to an increase in the number of states that have to be
examined during a veri�cation attempt. For this reason, on a model of a given
size, veri�cation of the successful trace completion is more expensive, in terms
of time and memory, than veri�cation of ring topology and state information.

Statistics for the veri�cation of the ring algorithm are presented in Table 1.
The �rst portion of the table reports on the veri�cation of state of the ring
properties, that is, the information in the socket description structures array
and the recorded identities of the two right-hand side neighbor of each daemon.
The second portion of the table presents statistics on veri�cation of a successful
trace after ring establishment. The algorithm was veri�ed for models comprising
up to four daemons, as indicated in the second column of the table.

We were unable to exhaustively verify the algorithm on models with �ve
or more daemons. Because of dramatic state space explosion and large state
vectors, veri�cation attempts for these models ran out of 970 MB of memory,
and using the compression and graph encoding techniques (-DCOLLAPSE and
-DMA=n compile-time directives) still did not enable the search to complete.When
we applied predicate abstraction techniques to model the ring establishment
algorithm, veri�cation succeeded for models with only up to eight daemons.
However, the desired correlation of the Promela model to the C/Python code
was lost, as was the ability to perform meaningful simulations. As shown below
in veri�cation statistics of other MPD algorithms that we have modeled and
veri�ed, the rapid increase in the number of states for relatively small models
occurs only for the ring establishment algorithm and is due in large part to its
properties.

Since the daemons enter the ring in parallel, there are many possible in-
terleavings of their execution leading to many possible ring con�gurations. In
general, given n daemons, there are n! resulting ring con�gurations. Moreover,
a daemon enters the ring in two steps: �rst it connects its left-hand side, then
its right-hand side, which in turn increases the number of possible interleavings.
An increase in model size also leads to an increase in the number of sockets/fds
that are manipulated. Since every connection consists of two sockets, there is a

13

minimum of 2n sockets in a ring of n daemons. However, as the ring is being
created, additional sockets are required because there are execution sequences in
which allocation of a new socket occurs before deallocation of a socket belonging
to a connection whose other end has been closed. Finally, an increase in model
size leads to an increase of the bu�er size of the communication channels. Recall
that when a new daemon enters the ring, a rhs2info message is sent along the
ring in a counterclockwise direction to a daemon located two positions to the
left of the new daemon. Therefore, in a general case, for n new daemons inserted
into the ring, n rhs2info messages are sent. Some execution sequences result
in all n messages accumulating on a single communication channels. Therefore,
the bu�er size is equal to the number of daemons.

The fact that veri�cation succeeds only on small models needs to be put in
perspective. On one hand, a running MPD typically consists of several tens or
hundred of processes. Therefore, given the current technology, we cannot com-
pletely verify MPD algorithms for every possible system size and topology. On
the other hand, prior experience with debugging of the MPD code suggests that
even the most diÆcult errors manifest themselves in systems of just a few (four
to ten) processes. Therefore, the models of MPD algorithms as the current level
of abstraction allow us to perform veri�cation of some algorithms on models of
satisfactory size. For other algorithms, such as the ring establishment algorithm,
a slightly more abstract model or a more eÆcient socket library will enable
veri�cation to complete on models of suÆcient size.

4.2 Recovery from a Single Nondeterministic Failure

The ring recovery algorithm works as follows. When a daemon in a properly
established ring fails, the operating system on its host processor will close all
sockets that belonged to it, so the neighbors of the failed daemon will see that
the sockets on their opposite end of their connection to the daemon were closed.
Of course, sockets may be closed for legitimate reasons as well, but the suite of
MPD algorithms is designed in such a way that a closed socket on the right-hand
side connection in the ring, without any advance noti�cation that a controlled
shutdown or disconnection will take place, signi�es an unintended failure and
places the burden of recovery on the remaining members of the ring. In the
algorithm, the left-hand side neighbor reinstates the ring by establishing a con-
nection to the right-hand side neighbor of the failed ring. The identities of the
two right-hand side neighbors must be updated for all a�ected daemons.

In our model of the algorithm the initial ring is hard-coded. One daemon is
directed to fail, although we do not specify which one should do so. The recovery
procedure is then initiated. The model algorithm was veri�ed against the three
correctness properties of a properly established ring, as discussed above. Table 2
shows statistics of the veri�cation attempts.

14

Correctness Model Time Memory Vector Size States Search
Property Size (s) (MB) (byte) Stored/Matched Depth

State 2 0.00 2.5 96 52/2 34
3 0.00 2.5 116 266/141 56
4 0.01 2.6 180 1073/1288 73
5 0.10 3.4 216 4276/7985 90
6 0.60 7.0 304 16323/41086 107
7 2.97 23.1 352 59822/189011 124
8 15.79 91.9 464 212205/806732 141
9 69.70 376.0 520 734040/3.26e+06 158
10* 243.08 71.8 656 2.49e+06/1.27e+07 175
11* 1054.09 235.9 720 8.32e+06/4.78e+07 192
12* 5340.19 772.6 876 2.75e+07/1.76e+08 209

Trace 2 0.00 2.5 96 64/2 38
3 0.01 2.5 116 326/161 64
4 0.02 2.7 176 1433/1648 87
5 0.17 4.0 216 6992/12801 112
6 1.46 13.1 304 38755/98302 139
7 13.74 89.7 352 253322/832511 168
8 163.39 814.1 464 1.93e+06/7.83e+06 199
9* 1919.94 502.5 520 1.62e+07/7.85e+07 232

Table 2. Veri�cation statistics for the ring recovery algorithm

4.3 Manager-Level Barrier Algorithm

Parallel programs frequently rely on a barrier mechanism to ensure that all
processes of the job reach a certain point (complete initialization, for example)
before any are allowed to proceed further. Parallel jobs, that is, programs running
on the clients, rely on the manager processes to implement the barrier service.
The algorithm proceeds as follows. A manager process is designated as the leader
of the algorithm and is given a rank of 0. When the leader reads a request from
its client to provide the barrier service, it sends a message barrier in to its
right-hand side neighbor in the ring. When a non-leader manager receives the
barrier in message, it behavior is determined by whether its client has already
request the barrier service. If the client has done so, the manager forwards the
message to the right-hand side manager. Otherwise, it holds the barrier in

message until the request from the client arrives. While the barrier in message
is held, a bit variable holding barrier in is set. Once the barrier in mes-
sage traverses the entire manager ring and arrives back in the leader, meaning
that each client has reached the barrier and noti�ed its manager, the leader
sends a barrier out message around the ring. When a manager receives the
barrier outmessage, it noti�es its client to proceed past the barrier. The leader
can be either the �rst or the last manager to allow its client to proceed.

We modeled the algorithm on top of the socket library. A ring of managers is
hard-coded in the beginning, and a manager with pid of 0 is designated as the
leader. There is no need to model the clients explicitly; thus the communication

15

Model Time Memory Vector Size States Search
Size (s) (MB) (byte) Stored/Matched Depth

1 0.00 2.5 40 20/4 14
2 0.00 2.5 60 47/24 21
3 0.00 2.5 84 118/118 29
4 0.00 2.5 108 321/506 37
5 0.01 2.6 128 920/1992 45
6 0.04 2.8 152 2707/7420 53
7 0.18 3.8 172 8058/26618 61
8 0.73 7.2 196 24101/92958 69
9 2.42 18.1 220 72220/318220 77
10 9.73 54.6 244 216567/1.07e+06 85
11 35.03 168.8 264 649598/3.57e+06 93
12 127.97 549.2 288 1.95e+06/1.18e+07 101
13* 759.23 192.9 308 5.85e+06/3.85e+07 109
14* 3050.96 571.3 332 1.75e+07/1.25e+08 117

Table 3. Veri�cation statistics for the barrier algorithm

with them is represented by two bits per manager. One bit designates that a
request for a barrier service has been received by the manager. The other bit,
client barrier out, designates that the manager noti�ed the client to proceed
past the barrier. Global arrays of bits were de�ned, using the bit-array imple-
mentation by Ruys [13], to store these values. A constant ALL BITS corresponds
to a value of the bit array where an element was set for every manager in the
ring.

We veri�ed two correctness conditions about the algorithm. First, at the end
of the algorithm, all clients must have been told to proceed past the barrier:

timeout -> assert(client_barrier_out == ALL_BITS)

The second condition is an invariant: no client is allowed to proceed until all
clients have reached the barrier and all managers have released the barrier in

message:

assert((client_barrier_out == 0) ||

((client_barrier_in == ALL_BITS)

&& (holding_barrier_in == 0)))

Table 3 shows statistics for veri�cation of the barrier algorithm. We were
able to exhaustively verify models with up to fourteen managers.

5 Summary and Future Plans

We described here our �rst experiences in applying the Spin-based approach to
veri�cation of a parallel process management system called MPD. We settled on

16

a three-tier architecture for the models in order to maintain the correlation to the
eventual code of the MPD system and to enforce modularity of the model. The
bottom layer of the architecture consists of a Promela model of operations on
Unix sockets. We encountered some early diÆculties in the veri�cation attempts.
Speci�cally, for the ring establishment algorithm, exhaustive veri�cation can be
completed only on models with up to four daemons. However, we were able to
exhaustively verify larger models of other algorithms.

Based on our experiences, we believe that design and development of algo-
rithms for MPD and similar systems can bene�t greatly from application of the
Spin-based software veri�cation methods. Spin's simulation capability allows for
rapid prototyping of new algorithms. Since even the most diÆcult errors can be
discovered on models comprising only a few processes, the veri�cation engine of
Spin enables us to verify the algorithms on models that are suÆciently large for
our purposes.

A long-term goal of this project is to model and verify MPD algorithms and
then translate them into C or another programming language, while preserving
the veri�ed properties. Ideally, translation should be automated. To allow this
to happen, the Promela model must not be overly abstract. Figure 8 shows a
Promelamodel and a C implementation of a portion of the barrier algorithm, in
which a barrier inmessage is received and processed by a manager. Automated
translation certainly appears feasible for this level of abstraction of the Promela
model. Notice the one-to-one correspondence between the control structures of
the two segments. There is further correspondence between Promela and C for
checking and setting of boolean variables (lines p.3,c.2 and p.15,c.13). The
code for message assembly (lines p.6,c.4 and p.10,c.12) matches as follows. A
Promela macro make barrier out msg corresponds in C to writing a string,
containing a barrier out command, to a bu�er. In the Promela model, before
a message can be written to a bu�er, the corresponding fd must be found using
functions find right or find left. In the C code, the bu�er is written to a
�le descriptor correspondingly referenced by rhs idx or lhs idx. Therefore, the
two Promela lines p.6-7 match a single C line c.5.

Of course, not all models will lend themselves well to veri�cation at this level
of abstraction, as veri�cation of the ring establishment algorithm demonstrated.
But, models of the MPD algorithms should fall into just a few di�erent classes
with respect to the level of abstraction, and a separate mapping can be de�ned
for each such level to enable the Promela-to-C translation.

We will continue to model and verify individual MPD algorithms. They in-
clude the daemon-level functionality for controlled shutdown of a portion of
the ring and subsequent ring reestablishment, as well as various manager-level
algorithms, such as the handling of the parallel input and output to the con-
sole. Correct interaction of these algorithms is also very important. Many things
take place in parallel in a running MPD system. Daemons enter and leave the
ring, as do managers, di�erent client processes request di�erent services from
the managers, and several instances of the same algorithm may be executing

17

p.1 :: (msg.cmd == barrier_in) ->

p.2 if

p.3 :: (IS_1(client_barrier_in,_pid)) ->

p.4 if

p.5 :: (_pid == 0) ->

p.6 make_barrier_out_msg;

p.7 find_right(fd,_pid);

p.8 write(fd,msg)

p.9 :: else ->

p.10 make_barrier_in_msg;

p.11 find_right(fd,_pid);

p.12 write(fd,msg)

p.13 fi

p.14 :: else ->

p.15 SET_1(holding_barrier_in,_pid)

p.16 fi

c.1 if (strcmp(cmdval, "barrier_in") == 0) {

c.2 if (client_barrier_in) {

c.3 if (rank == 0) {

c.4 sprintf(buf,

"cmd=barrier_out dest=anyone src=%s\n",

myid);

c.5 write_line(buf, rhs_idx);

c.6 }

c.7 else {

c.8 sprintf(buf,

"cmd=barrier_in dest=anyone src=%s\n",

origin);

c.9 write_line(buf, rhs_idx);

c.10 }

c.11 }

c.12 else {

c.13 holding_barrier_in = 1;

c.14 }

c.15 }

Fig. 8. Portion of the Promela model and C implementation of the barrier algorithm

simultaneously. We hope to be able to reason formally about MPD models that
consist of several related and interdependent algorithms.

The Promela implementation of the the Unix socket library as well
as models of the MPD algorithms described in this paper are available at
http://www.mcs.anl.gov/~matlin/spin-mpd.

18

References

1. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment for
parallel programs. In J. Dongarra, P. Kacsuk, and N. Podhorszki, editors, Recent
Advances in Parallel Virutal Machine and Message Passing Interface, LNCS 1908,
pages 168{175. Springer Verlag, September 2000.

2. R. Butler, W. Gropp, and E. Lusk. Components and interfaces of a process man-
agement system for parallel programs. Parallel Computing, 27:1417{1429, 2001.

3. E. Fersman and B. Jonsson. Abstraction of communication channels in Promela: A
case study. In K. Havelund, J. Penix, and W. Visser, editors, SPIN Model Checking

and Software Veri�cation: Proceedings of the 7th International SPIN Workshop,
LNCS 1885, pages 187{204. Springer Verlag, 2000.

4. W. Gropp and E. Lusk. MPICH. ftp://info.mcs.anl.gov/pub/mpi.
5. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-

plementation of the MPI Message-Passing Interface standard. Parallel Computing,
22(6):789{828, 1996.

6. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

7. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-

neering, 22(5):279{295, May 1997.
8. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, 2000.
9. M. Kaufmann and J S. Moore. An industrial strength theorem prover for a logic

based on Common Lisp. IEEE Transactions on Software Engineering, 23(4):203{
213, April 1997.

10. W. McCune and E. Lusk. ACL2 for parallel systems software. In M. Kaufmann
and J S. Moore, editors, Proceedings of the 2nd ACL2 Workshop. University of
Texas, 2000. http://www.cs.utexas.edu/users/moore/acl2/workshop-2000.

11. Message Passing Interface Forum. MPI: A Message-Passing Interface standard.
International Journal of Supercomputer Applications, 8(3/4):165{414, 1994.

12. Message Passing Interface Forum. MPI2: A message passing interface standard.
International Journal of High Performance Computing Applications, 12(1{2):1{
299, 1998.

13. T. C. Ruys. Low-fat recipes for SPIN. In K. Havelund, J. Penix, and W. Visser,
editors, SPIN Model Checking and Software Veri�cation: Proceedings of the 7th

International SPIN Workshop, LNCS 1885, pages 287{321. Springer Verlag, 2000.
14. W. R. Stevens. Unix Network Programming, volume 1. Prentice Hall PTR, second

edition, 1998.

19

